Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions.

نویسندگان

  • Maurits R R de Planque
  • Boyan B Bonev
  • Jeroen A A Demmers
  • Denise V Greathouse
  • Roger E Koeppe
  • Frances Separovic
  • Anthony Watts
  • J Antoinette Killian
چکیده

Membrane model systems consisting of phosphatidylcholines and hydrophobic alpha-helical peptides with tryptophan flanking residues, a characteristic motif for transmembrane protein segments, were used to investigate the contribution of tryptophans to peptide-lipid interactions. Peptides of different lengths and with the flanking tryptophans at different positions in the sequence were incorporated in relatively thick or thin lipid bilayers. The organization of the systems was assessed by NMR methods and by hydrogen/deuterium exchange in combination with mass spectrometry. Previously, it was found that relatively short peptides induce nonlamellar phases and that relatively long analogues order the lipid acyl chains in response to peptide-bilayer mismatch. Here it is shown that these effects do not correlate with the total hydrophobic peptide length, but instead with the length of the stretch between the flanking tryptophan residues. The tryptophan indole ring was consistently found to be positioned near the lipid carbonyl moieties, regardless of the peptide-lipid combination, as indicated by magic angle spinning NMR measurements. These observations suggest that the lipid adaptations are not primarily directed to avoid a peptide-lipid hydrophobic mismatch, but instead to prevent displacement of the tryptophan side chains from the polar-apolar interface. In contrast, long lysine-flanked analogues fully associate with a bilayer without significant lipid adaptations, and hydrogen/deuterium exchange experiments indicate that this is achieved by simply exposing more (hydrophobic) residues to the lipid headgroup region. The results highlight the specific properties that are imposed on transmembrane protein segments by flanking tryptophan residues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides.

Specific interactions of membrane proteins with the membrane interfacial region potentially define protein position with respect to the lipid environment. We investigated the proposed roles of tryptophan and lysine side chains as "anchoring" residues of transmembrane proteins. Model systems were employed, consisting of phosphatidylcholine lipids and hydrophobic alpha-helical peptides, flanked e...

متن کامل

Insertion into lipid bilayer of truncated pHLIP® peptide

The investigation of pH-dependent membrane-associated folding has both fundamental interest and practical applications for targeting of acidic tumors and specific delivery of therapeutic molecules across membrane of cancer cells. We and others investigated molecular mechanism and medical uses of class of water soluble membrane peptides, pH (Low) Insertion Peptides (pHLIP® peptides). Here we emp...

متن کامل

Effect of charged residue substitutions on the thermodynamics of signal peptide-lipid interactions for the Escherichia coli LamB signal sequence.

We have used tryptophan fluorescence spectroscopy to characterize the binding affinities of an Escherichia coli LamB signal peptide family for lipid vesicles. These peptides harbor charged residue substitutions in the hydrophobic core region. Titrations of peptides with vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-oleoyl-sn-3-phosphoglycerol (65:3...

متن کامل

How transmembrane peptides insert and orientate in biomembranes: a combined experimental and simulation study.

After the synthesis of transmembrane peptides/proteins (TMPs), their insertion into a lipid bilayer is a fundamental biophysical process. Moreover, correct orientations of TMPs in membranes determine the normal functions they play in relevant cellular activities. In this study, we have established a method to determine the orientation of TMPs in membranes. This method is based on the use of TAM...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 42 18  شماره 

صفحات  -

تاریخ انتشار 2003